Computational Genomics Kubernetes Installation
The Computational Genomics Group has a Kubernetes Cluster running on several large instances in AWS. The current cluster makeup includes two worker nodes, each with the following specs:
* 96 CPU cores (3.1 GHz) * 384 GB RAM * 3.3 TB Local NVMe Flash Storage * 25 Gb/s Network Interface
Getting Authorized to Connect
If you require access to this kubernetes cluster, contact Benedict Paten asking for permission to use it, then pass on that permission via email to:
cluster-admin@soe.ucsc.edu
Let us know which group you are with and we can authorize you to use the cluster in the correct namespace.
Authenticating to Kubernetes
We will authorize (authz) you to use the cluster on the server side, but you will also need to authenticate (authn) using your '@ucsc.edu' email address and a unique Java Web token. These credentials are installed in ~/.kube/config in whatever machine you are coming from to get to the cluster.
To authenticate and get your base kubernetes configuration, go to this URL (below), which will ask you to authenticate to Google. Use your '@ucsc.edu' email address as the login. It will then ask you to authenticate via CruzID Gold if your web browser doesn't already have the authentication token cached:
https://cg-kube-auth.gi.ucsc.edu
Once you authenticate (via username/password and 2-factor auth for CruzID Gold)), it will pass you back to the 'https://cg-kube-auth.gi.ucsc.edu' website and it should confirm authentication on the top with a message saying "Successfully Authenticated". If you see any errors in red, but are sure you typed in your password and 2-factor auth correctly, click on the above link again (https://cg-kube-auth.gi.ucsc.edu) and authenticate a second time, which should work. There is a quirk where the web token doesn't always pass back to us correctly on the first try.
Upon success, you will be able to click the blue "Download Config File" button, which contains your initial kubernetes config file. Copy this file to your home directory as ~/.kube/config. Follow the directions on the web page to insert your "namespace:" line as directed. We will let you know which namespace to use.
Testing Connectivity
Once your ~/.kube/config file is set up correctly, you should be able to connect to the cluster. All our shared servers here at the Genomics Institute have the 'kubectl' command installed on them, but if you are coming from somewhere else, just make sure the "kubectl" utility is installed on that machine.
A quick test should go as follows:
$ kubectl get nodes NAME STATUS ROLES AGE VERSION k1.kube Ready <none> 13h v1.15.3 k2.kube Ready <none> 13h v1.15.3 master.kube Ready master 13h v1.15.3
Running Pods and Jobs
When running jobs and pods on kubernetes, you will always want to specify "requests" and "limits" on resources, otherwise you pods will get stuck with the default limits which are tiny (to protect against runaway pods).
Here is a good example of a job file that specifies limits:
job.yml apiVersion: batch/v1 kind: Job metadata: name: $USER-$TS spec: backoffLimit: 0 ttlSecondsAfterFinished: 30 template: spec: containers: - name: magic image: robcurrie/ubuntu imagePullPolicy: Always resources: requests: cpu: "1" memory: "2G" ephemeral-storage: "2G" limits: cpu: "2" memory: "3G" ephemeral-storage: "3G" command: ["/bin/bash", "-c"] args: ['for i in {1..100}; do echo "$i: $(date)"; i=$((i+1)); sleep 1; done'] restartPolicy: Never
View the Cluster's Current Activity
You can take a look at current resource consumption by taking a look at our Ganglia Cluster monitor tool:
https://ganglia.gi.ucsc.edu/
That website requires a username and password:
username: genecats password: KiloKluster
That's mostly for keeping the scrip kiddies and bots from banging on it.
Once you get in, you should see a drop-down menu near the top left of the screen near "Genomics Institute Grid". From the drop-down menu, select "CG Kubernetes Cluster". It will take you to a page detailing the current resource usage and activity on the nodes. This can be useful for see if anyone else is using the whole cluster, or just to get an idea of how many resources are available for your batch of jobs to assign to the cluster.